3.58 \(\int \sqrt {\pi +c^2 \pi x^2} (a+b \sinh ^{-1}(c x)) \, dx\)

Optimal. Leaf size=67 \[ \frac {1}{2} x \sqrt {\pi c^2 x^2+\pi } \left (a+b \sinh ^{-1}(c x)\right )+\frac {\sqrt {\pi } \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b c}-\frac {1}{4} \sqrt {\pi } b c x^2 \]

[Out]

-1/4*b*c*x^2*Pi^(1/2)+1/4*(a+b*arcsinh(c*x))^2*Pi^(1/2)/b/c+1/2*x*(a+b*arcsinh(c*x))*(Pi*c^2*x^2+Pi)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 111, normalized size of antiderivative = 1.66, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {5682, 5675, 30} \[ \frac {1}{2} x \sqrt {\pi c^2 x^2+\pi } \left (a+b \sinh ^{-1}(c x)\right )+\frac {\sqrt {\pi c^2 x^2+\pi } \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b c \sqrt {c^2 x^2+1}}-\frac {b c x^2 \sqrt {\pi c^2 x^2+\pi }}{4 \sqrt {c^2 x^2+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Pi + c^2*Pi*x^2]*(a + b*ArcSinh[c*x]),x]

[Out]

-(b*c*x^2*Sqrt[Pi + c^2*Pi*x^2])/(4*Sqrt[1 + c^2*x^2]) + (x*Sqrt[Pi + c^2*Pi*x^2]*(a + b*ArcSinh[c*x]))/2 + (S
qrt[Pi + c^2*Pi*x^2]*(a + b*ArcSinh[c*x])^2)/(4*b*c*Sqrt[1 + c^2*x^2])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5675

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSinh[c*x]
)^(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && GtQ[d, 0] && NeQ[n, -1
]

Rule 5682

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(x*Sqrt[d + e*x^2]*
(a + b*ArcSinh[c*x])^n)/2, x] + (Dist[Sqrt[d + e*x^2]/(2*Sqrt[1 + c^2*x^2]), Int[(a + b*ArcSinh[c*x])^n/Sqrt[1
 + c^2*x^2], x], x] - Dist[(b*c*n*Sqrt[d + e*x^2])/(2*Sqrt[1 + c^2*x^2]), Int[x*(a + b*ArcSinh[c*x])^(n - 1),
x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0]

Rubi steps

\begin {align*} \int \sqrt {\pi +c^2 \pi x^2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx &=\frac {1}{2} x \sqrt {\pi +c^2 \pi x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac {\sqrt {\pi +c^2 \pi x^2} \int \frac {a+b \sinh ^{-1}(c x)}{\sqrt {1+c^2 x^2}} \, dx}{2 \sqrt {1+c^2 x^2}}-\frac {\left (b c \sqrt {\pi +c^2 \pi x^2}\right ) \int x \, dx}{2 \sqrt {1+c^2 x^2}}\\ &=-\frac {b c x^2 \sqrt {\pi +c^2 \pi x^2}}{4 \sqrt {1+c^2 x^2}}+\frac {1}{2} x \sqrt {\pi +c^2 \pi x^2} \left (a+b \sinh ^{-1}(c x)\right )+\frac {\sqrt {\pi +c^2 \pi x^2} \left (a+b \sinh ^{-1}(c x)\right )^2}{4 b c \sqrt {1+c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 69, normalized size = 1.03 \[ \frac {\sqrt {\pi } \left (2 \sinh ^{-1}(c x) \left (2 a+b \sinh \left (2 \sinh ^{-1}(c x)\right )\right )+4 a c x \sqrt {c^2 x^2+1}+2 b \sinh ^{-1}(c x)^2-b \cosh \left (2 \sinh ^{-1}(c x)\right )\right )}{8 c} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Pi + c^2*Pi*x^2]*(a + b*ArcSinh[c*x]),x]

[Out]

(Sqrt[Pi]*(4*a*c*x*Sqrt[1 + c^2*x^2] + 2*b*ArcSinh[c*x]^2 - b*Cosh[2*ArcSinh[c*x]] + 2*ArcSinh[c*x]*(2*a + b*S
inh[2*ArcSinh[c*x]])))/(8*c)

________________________________________________________________________________________

fricas [F]  time = 0.51, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {\pi + \pi c^{2} x^{2}} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))*(pi*c^2*x^2+pi)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(pi + pi*c^2*x^2)*(b*arcsinh(c*x) + a), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))*(pi*c^2*x^2+pi)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.06, size = 112, normalized size = 1.67 \[ \frac {x a \sqrt {\pi \,c^{2} x^{2}+\pi }}{2}+\frac {a \pi \ln \left (\frac {\pi x \,c^{2}}{\sqrt {\pi \,c^{2}}}+\sqrt {\pi \,c^{2} x^{2}+\pi }\right )}{2 \sqrt {\pi \,c^{2}}}+\frac {b \sqrt {\pi }\, \arcsinh \left (c x \right ) \sqrt {c^{2} x^{2}+1}\, x}{2}-\frac {b c \,x^{2} \sqrt {\pi }}{4}+\frac {b \sqrt {\pi }\, \arcsinh \left (c x \right )^{2}}{4 c}-\frac {b \sqrt {\pi }}{4 c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))*(Pi*c^2*x^2+Pi)^(1/2),x)

[Out]

1/2*x*a*(Pi*c^2*x^2+Pi)^(1/2)+1/2*a*Pi*ln(Pi*x*c^2/(Pi*c^2)^(1/2)+(Pi*c^2*x^2+Pi)^(1/2))/(Pi*c^2)^(1/2)+1/2*b*
Pi^(1/2)*arcsinh(c*x)*(c^2*x^2+1)^(1/2)*x-1/4*b*c*x^2*Pi^(1/2)+1/4*b*Pi^(1/2)/c*arcsinh(c*x)^2-1/4*b*Pi^(1/2)/
c

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))*(pi*c^2*x^2+pi)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )\,\sqrt {\Pi \,c^2\,x^2+\Pi } \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(c*x))*(Pi + Pi*c^2*x^2)^(1/2),x)

[Out]

int((a + b*asinh(c*x))*(Pi + Pi*c^2*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \sqrt {\pi } \left (\int a \sqrt {c^{2} x^{2} + 1}\, dx + \int b \sqrt {c^{2} x^{2} + 1} \operatorname {asinh}{\left (c x \right )}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))*(pi*c**2*x**2+pi)**(1/2),x)

[Out]

sqrt(pi)*(Integral(a*sqrt(c**2*x**2 + 1), x) + Integral(b*sqrt(c**2*x**2 + 1)*asinh(c*x), x))

________________________________________________________________________________________